定制热线: 400-666-3615
2022-02-11 点击量:1524次
固态电解质
固态电解质与液体有机电解液相比用于锂电池后具有更大的优势,例如设计简单、封装方便、抗冲击抗震动性能好、耐温度和压力性能好、电化学稳定性和范围广、安全性好等。然而,固态电解质的离子导电性相对还较受限制。一般来说,固态电解质可以分为凝胶型聚合物、无溶剂聚合物、无机晶体化合物、无机玻璃态物质等。在无机晶体化合物内部,锂离子的传导是因为移动离子在周围电位的能量有利位点之间跳跃形成的,周围离子的运动为移动离子提供激活能量以促使其通过晶体结构中的通道。
聚合物电解质的离子传输机制与无机晶体化合物和液态电解液的传输机制不同。在无溶剂的聚合物电解质中,离子迁移率受聚合物主体材料运动的影响。离子仅在聚合物链段经历与玻璃化转变温度(Tg)有关的相当大振幅运动时才移动。聚合物电解质在高于玻璃转变温度Tg时才表现出快的离子电导率,此时聚合物电解质主要由非晶相构成。因此,低玻璃转变温度Tg的聚合物如PEO(Tg-50至-57℃)已成为无溶剂电解质的重要聚合物主体,并且正在研究该聚合物的非晶化作为增加其离子电导率的方式。由于低分子量溶剂在聚合物中的扩散以及聚合物链段的运动,凝胶型聚合物电解质表现出比无溶剂电解质更快的离子传导。
以PEO为例,该类聚合物的电解质传输机制如上图所示,通电以后,聚合物中非晶部分的链段运动导致Li+的“解络合—再络合”过程的反复进行而促使离子实现快速迁移。
在半导体工业中开发的基于薄膜技术的固体电解质已经作为固态微电池的关键组件被深入研究。由于合成时间长和制造过程中的高温条件需求,为微电池开发的大多数晶态和玻璃态电解质的成本太高。除了这些缺点之外,用于固态电解质的无机材料通常含有昂贵的金属,如Ge,Ti,Sc,In,Lu,La和Y等。由于放大和应用大多数固态电解质时遇到的困难,仅凝胶型聚合物电解质在商业上取得成功。
声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:378886361)
钜大特种锂离子电池工程研究中心是由东莞钜大电子有限公司兴建,并与中南大学、华南理工大学和东莞理工学院相关科研团队联合运营的特种锂离子电池产业化研发中心,研究中心秉持"以特殊环境、特殊用途和特殊性能的需求为导向,以产学研深度融合为创新驱动"的办院方针,力求满足用户独特的需要,从而为用户创造独特的价值。