23年专注锂电池定制

定制热线: 400-666-3615

什么原因影响锂离子电池的内阻?

2022-04-25   点击量:1219

欧姆内阻


欧姆内阻重要分为三个部分,一是离子阻抗,二是电子阻抗,三是接触阻抗。我们希望锂离子电池的内阻越小越小,那么就要针对此三项内容采取具体措施来降低欧姆内阻。


离子阻抗


锂离子电池离子阻抗是指锂离子在电池内部传递所受到的阻力。在锂离子电池中锂离子迁移速度和电子传导速度起着同样重要的用途,离子阻抗重要受正负极材料、隔膜以及电解液的影响。想要降低离子阻抗,要做好以下几点:


保证正负极材料和电解液具有良好的浸润性


在极片设计时要选定合适的压实密度,假如压实密度过大,电解液不易浸润,会提高离子阻抗。关于负极极片来说,假如首次充放电时在活物质表面形成的SEI膜过厚,也会提高离子阻抗,这时要调节电池的化成工艺来解决。


电解液的影响


电解液要具有合适的浓度、粘度和电导率。电解液粘度过高时,不利于其与正负极活物质之间的浸润。同时,电解液也要较低的浓度,浓度过高同样不利于其流动浸润。电解液的电导率是影响离子阻抗的最重要的因素,其决定着离子的迁移。


隔膜对离子阻抗的影响


隔膜对离子阻抗的重要影响因素有:隔膜中电解液分布、隔膜面积、厚度、孔隙大小、孔隙率以及曲折系数等。关于陶瓷隔膜来说,还要预防陶瓷颗粒堵塞隔膜孔隙不利于离子通过。在保证电解液充分浸润隔膜的同时,还不能有余量的电解液残留其中,降低电解液的使用效率。


结构设计影响


在电池结构设计中,除了电池结构件本身的铆接及焊接之外,电池极耳的数量、尺寸、位置等直接影响电池内阻大小。在一定程度内,新增极耳数量,可有效降低电池内阻。极耳位置也影响电池的内阻,极耳位置在正负极极片头部的卷绕电池内阻最大,且相较于卷绕式电池,叠片式电池相当于几十片小电池并联,其内阻更小。


原材料性能影响


正负极活性材料


锂离子电池中正极材料是储锂一方,更多的决定了锂离子电池的性能,正极材料重要通过包覆与掺杂来改善颗粒之间的电子传导能力。如掺杂Ni后增强了P-O键的强度,稳定了LiFePO4/C的结构,优化了晶胞体积,可有效降低正极材料的电荷转移阻抗。活化极化特别是负极活化极化的大幅新增是极化严重的重要原因。减小负极颗粒粒径可以有效减小负极活化极化,当负极固相粒径减小一半时,活化极化可降低45%。因此,就电池设计而言,正负极材料本身的改善研究也是必不可少的。


导电剂


石墨和炭黑因其良好性能,在锂离子电池领域应用广泛。相关于石墨类导电剂,正极添加炭黑类导电剂的电池倍率性能更优,因为石墨类导电剂具有片状颗粒形貌,大倍率下引起孔隙曲折系数较大上升,易出现Li液相扩散过程限制放电容量的现象。而添加了CNTs的电池其内阻更小,因为相对石墨/炭黑与活性材料的点接触,纤维状的碳纳米管与活性材料属于线接触,可以降低电池的界面阻抗。


集流体


降低集流体与活性物质间的界面电阻,提高两者之间的粘结强度是提升锂离子电池性能的重要手段。在铝箔表面涂覆导电碳涂层和对铝箔进行电晕处理可有效降低电池的界面阻抗。相较普调铝箔,使用涂碳铝箔可以使电池的内阻降低65%左右,且可降低电池在使用过程中内阻的增幅。经电晕处理的铝箔交流内阻可降低20%左右,在常使用的20%~90%SOC区间内,直流内阻整体偏小且随放电深度的新增,其增幅逐渐较小。


隔膜


电池内部的离子传导需依赖电解液中Li离子通过隔膜多孔的扩散,隔膜的吸液润湿能力是形成良好离子流动通道的关键,当隔膜具有更高的吸液率和多孔结构时,能提升导电性减小电池阻抗,提高电池的倍率性能。相较普通基膜,陶瓷隔膜和涂胶隔膜不但能大幅提高隔膜的高温耐收缩性,而且可增强隔膜的吸液润湿能力,在PP隔膜上新增SiO2陶瓷涂层,可使隔膜的吸液量新增17%。在PP/PE复合隔膜上涂覆1μm的PVDF-HFP,隔膜吸液率由70%新增到82%,电芯内阻下降20%以上。


从制程工艺和使用条件等方面来讲影响电池内阻的因素重要包括:


制程因素影响


合浆


合浆时浆料分散的均匀性影响着导电剂是否能够均匀的分散在活性物质中与其紧密接触,与电池内阻相关。通过新增高速分散,可提高浆料分散的均匀性,电池内阻越小。通过添加表面活性剂可改善提高电极中导电剂的分布均匀性,可减小电化学极化提高放电中值电压。


涂布


面密度是电池设计的关键参数之一,在电池容量一按时,新增极片面密度势必会减小集流体和隔膜的总长度,电池的欧姆内阻会随之减小,因此在一定范围内,电池的内阻随着面密度的新增而减小。涂布烘干时溶剂分子的迁移与脱离与烘箱的温度密切相关,直接影响着极片内粘结剂和导电剂的分布,进而影响极片内部导电网格的形成,因此涂布烘干的温度也是优化电池性能的重要工艺过程。


辊压


在一定程度内,电池内阻随着压实密度的增大而减小,因为压实密度增大,原材料粒子间的距离减小,粒子间的接触越多,导电桥梁和通道越多,电池阻抗降低。而控制压实密度重要是通过辊压厚度来实现的。不同辊压厚度对电池内阻具有较大程度的影响,辊压厚度较大时,由于活性物质未能辊压紧密致使活性物质与集流体之间的接触电阻增大,电池内阻增大。且电池循环后辊压厚度较大的电池正极表面出现裂纹,会进一步增大极片表面活性物质与集流体之间的接触电阻。


极片周转时间


正极片不同搁置时间对其电池内阻具有较大程度的影响,搁置时间较短时,受磷酸铁锂表面碳包覆层与磷酸铁锂用途力影响,电池的内阻增大较为缓慢;当搁置时间较长时(大于23h),受磷酸铁锂与水反应以及粘合剂的粘合用途共同影响,电池的内阻增大较为明显。因此,实际生产中需严格控制极片的周转时间。


注液


电解液的离子电导率决定了电池的内阻和倍率特性,电解液电导率的大小与溶剂的粘度程反比,同时还受锂盐浓度和阴离子大小的影响。除了对电导率的优化研究之外,注液量和注液后的浸润时间也直接影响着电池内阻,注液量较少或浸润时间不充分,都会引起电池内阻偏大,从而影响电池的容量发挥。


使用条件影响


温度


温度对内阻大小的影响是显而易见的,温度越低,电池内部的离子传输就越慢,电池的内阻就越大。电池阻抗可以分为体相阻抗、SEI膜阻抗和电荷转移阻抗,体相阻抗和SEI膜阻抗重要受电解液离子电导率影响,在低温下的变化趋势与电解液电导率变化趋势一致。相较体相阻抗和SEI膜阻在低温下的增幅,电荷反应阻抗随温度降低新增更加显著,在-20℃以下,电荷反应阻抗占电池总内阻的比例几乎达到100%。


SOC


当电池处于不同的SOC时,其内阻大小也不相同,尤其是直流内阻直接影响着电池的功率性能,进而反映电池在实际状态下的电池性能:锂离子电池直流内阻随电池放电深度DOD的新增而新增,在10%~80%的放电区间时内阻大小基本不变,一般在较深的放电深度时内阻新增显著。


存储


随着锂离子电池存储时间的新增,电池不断老化,其内阻不断增大。不同类型的锂离子电池内阻变化程度不同。在经历9-十月长时间的存储后,LFP电池的内阻新增率比NCA和NCM电池的内阻新增率高。内阻的新增率与存储时间、存储温度和存储SOC相关.


循环


不管是存储还是循环,温度对电池内阻的影响都是一致的,循环温度越高,内阻新增率越大。而不同的循环区间对电池的内阻影响也不相同,电池内阻随着充放电深度的提高而加速上升,内阻的增幅与充放电深度的加强成正比。除了循环中充放电深度的影响,充电截至电压也有影响:太低或太高的充电电压上限会使得电极的界面阻抗加大,太低的上限电压下不能够很好地形成钝化膜,而太高的电压上限会导致电解液在LiFePO4电极表面氧化分解形成电导率低的产物。

声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:378886361)

钜大特种电池工程研究院

钜大特种电池工程研究院

钜大特种锂离子电池工程研究中心是由东莞钜大电子有限公司兴建,并与中南大学、华南理工大学和东莞理工学院相关科研团队联合运营的特种锂离子电池产业化研发中心,研究中心秉持"以特殊环境、特殊用途和特殊性能的需求为导向,以产学研深度融合为创新驱动"的办院方针,力求满足用户独特的需要,从而为用户创造独特的价值。