22年专注锂电池定制

定制热线: 400-666-3615

有关锂二次电池的发展概况

2021-06-09   点击量:486

人类社会的进步离不开社会上各行各业的努力,各种各样的电子产品的更新换代离不开我们的设计者的努力,其实很多人并不会去了解电子产品的组成,比如锂离子二次电池。


随着电动汽车和移动电子产品的发展,社会对能源存储与转化提出更高要求,继锂离子电池之后,可充电电池的高能量密度、高倍率充放电、高循环稳定性成为需求。锂硫电池凭借其高能量密度(2600Whkg-1)、经济环保等优势成为下一代储能体系的候选者。然而,如单质硫与硫化锂的不导电性、多硫化锂中间产物的穿梭效应及充放电过程中体积的变化等问题,降低锂硫电池的利用率,使得容量衰减迅速,阻碍其商业化。


锂离子电池具有工作电压高、比能高、工作温度范围宽、放电稳定等优点。锂离子电池的研究始于20世纪50年代末,其发展经历了锂一次电池、金属锂二次电池、锂离子二次电池三个阶段。锂一次电池通常直接采用金属锂作为负极。根据电解液的类型和所用的阴极材料,可分为可溶性阴极电池(如Li/SO2、Li/SCC12和Li/S02C12)和固体阴极电池(如Li/Mn02、Li/(CF))。LifCuO、固体电解质电池(如Li/LiI/I2(p2Vp))、熔盐电解质电池(LiA1/lic1-kc1/FeS2)。


锂离子二次电池。该锂离子二次电池通常包括电极组件,容纳该电极组件的容器,及电解液。该电极组件包括极性相反的两个电极和隔板。该隔板包括含有陶瓷颗粒簇的多孔膜。该多孔膜是通过用粘结剂粘结颗粒簇形成的。各颗粒簇是通过烧结或者是通过溶解和重结晶全部或部分陶瓷颗粒而形成的。该陶瓷颗粒包含具有带隙的陶瓷材料。各颗粒簇可以具有葡萄串或薄层的形状,并且可以通过层压鳞片或薄片形状的陶瓷颗粒形成。


我国科学院苏州纳米技术与纳米仿生研究所研究员张跃钢与蔺洪振团队分别从纳米材料结构设计与表面功能化出发,制备不同的活性纳米催化剂复合材料,选用原位光谱手段研究其相关用途机制。研究人员优化调控三维石墨烯的孔隙结构及其功能团,实现对可溶的多硫化物的物理与化学强吸附用途(JournalofpowerSources,2016,321,193);利用原位化学聚合的方式,增强三维石墨烯/碳纳米管的复合纳米材料的结构稳定性,实现高面积载量(10.2mgcm-2)硫正极的长寿命稳定循环(图1)(NanoEnergy,2017,40,390)。同时,研究发现仅靠物理化学吸附的手段抑制穿梭效应具有局限性,不能满足电池的快速充放电特性。


离子二次电池是近年来迅速发展起来的一种新型电池。1985年,索尼公司开始研制以金属锂为阳极、以碳为阳极的锂离子电池。研制成功了以碳为阳极的新型二次电池,并于1990年首次推向市场。


二次电池的自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力。一般而言,自放电重要受制造工艺,材料,储存条件的影响自放电是衡量电池性能的重要参数之一。一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,BYD常规电池要求储存温度范围为-20~45。电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象。IEC标准规定镍镉及镍氢电池充满电后,在温度为20度湿度为65%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标。


本文只能带领大家对锂离子二次电池有了初步的了解,对大家入门会有一定的帮助,同时要不断总结,这样才能提高专业技能,也欢迎大家来讨论文章的一些知识点。


声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:378886361)

钜大特种电池工程研究院

钜大特种电池工程研究院

钜大特种锂离子电池工程研究中心是由东莞钜大电子有限公司兴建,并与中南大学、华南理工大学和东莞理工学院相关科研团队联合运营的特种锂离子电池产业化研发中心,研究中心秉持"以特殊环境、特殊用途和特殊性能的需求为导向,以产学研深度融合为创新驱动"的办院方针,力求满足用户独特的需要,从而为用户创造独特的价值。