22年专注锂电池定制

定制热线: 400-666-3615

电源适配器也经历了从大而笨到小而轻的变革

2019-01-16   点击量:414

在使用笔记本电脑和智能手机时,用户都希望充电越快越好,充电电源越小越好,因此从设备厂商到电源芯片厂商都在极力向着这个目标奋斗。但是电源适配器在小型化的过程中也面临很多挑战,比如:每个充电器在满载、半载、轻载以及待机时都希望达到高能效,我们针对轻载如何提高能效?随着元器件数量增加,密度变高,排列就会很紧凑,容易产生干扰,怎样同时做到高性能、EMI低、元器件数量少?除此之外,还要能涵盖从手机到笔记本尽可能广泛的充电应用,更重要的是性价比要高。


为了帮助用户解决这些问题,安森美推出了自适应有源钳位反激控制器NCP1568和700V半桥驱动器NCP51530,在拓扑结构、性能参数等方面进行了调整。据安森美半导体模拟方案部交流-直流电源管理高级市场推广经理蒋家亮介绍,“NCP1568ACF控制器具备先进的功能和灵活的操作,有助于提供卓越的能效,同时使用了SJFET或GaNFET,且只需少量外部器件就可实现高密度的设计。NCP51530驱动器是一款高速、高性能、强固的电源方案,包括针对汽车应用的AECQ-100认证选择。”


有源钳位反激拓扑实现高能效、低EMI


在传统的反激拓扑架构中,开关包含一个变压器和一个Mosfet。在开关时会产生振铃,它会产生高频的EMI,使得变压器漏电,耗散在缓冲器或者钳位电路中,难以在生产中控制和最小化。对于Mosfet损耗,应该选择Rd(on)FET减少高压损耗,在90V是降低能效时可能需要更好的散热器。如果不想产生EMI,需要周边的振铃电路来吸收,吸收掉就等于损耗掉,因此跑高频越多损耗越多,因此传统的反激拓扑结构不能跑到高频。


对比用有源钳位反激架构,在上面多加一个Mosfet和一个电容,在同样有吸收能量的地方,当Mosfet关时,全部能量会存储在电容里,有需要时再重新利用这部分能量。只要把Mosfet的开关电压设置为零伏,下边的Mosfet就等于是零伏的电压开关,等于没有损耗。当Mosfet关掉时,可以把EMI损耗的能量全部重新利用,传递到二极管,等于整个电源转换过程不会有损失,这样既可以做高频,也可以实现低EMI,同时还会保持高能效,这就是有源钳位反激架构的优势。


极大缩小电源适配器体积


NCP1568具有三种控制模式:第一,控制模式具有支适应零电压开关(ZVS)频率调制,支持可变的Vout,集成自适应死区时间,可以进行峰值电流模式控制;第二,非连续导通模式及轻载模式,可选过渡至DCM模式,频率返走,最小31kHz的频率钳位,静音跳跃消除可闻噪声,待机功耗小于30mW;第三,高压(HV)启动,700VHV启动JFET,集成高压开关节点检测以优化ZVS,内置欠压和X2放电。


关于自适应零电压开关频率可调节这一特点,蒋家亮解释,“对于USBType-C和USBPD应用,可以充手机的5V,也可以充笔记本的20V。另外,根据功率的不同,负载点的开关会做优化,减少开关导通损耗;自适应死区的时间也是确保每个周期开关状态最佳。IC需要将周期调到轻载、待机部分,以前反击做到非常低的待机,可能有声音,可以多加静音的方式。当一个频率返走的时候,我们可以把频率从29K马上调到800Hz,中间可以从29K变成20K或者十几K,这不好做,所以就是把中间的频率跳过。如何从29K开关频率马上跑到800Hz?1K、2K、3K、5K、10K这些人比较容易听到的频率全部跳过,马上跑到800Hz,也可以做到很低音的效果,这就是静音跳跃消除可闻躁声的效果。”


1111.jpg

NCP1568USBPD65W超高密度演示板



2222.jpg

iPhone8和电源适配器比较图


如图所示,采用NCP1568USBPD65W超高密度演示板的电源适配器相当于iPhone8手机的1/3。演示板采用了有源钳位反激及DCM工作模式,满载能效在120V时可以达到94%,在230V时可以达到94.6%,采用的是超结(SJ)FET,蒋家亮表示,“在94%的效率下基本不需要散热器,如果采用氮化镓材料,满载能效可能会达到95%多点。功率密度跟损耗永远都会有一个平衡点,在满载功率94%时不用散热片,假如用同样的板子跑高频,变压器更小,板更小,大概相当于现在的2/3,同样达到94%的能效,发热机会大。因为损耗是固定的,面积小了,发热提高了,所以要额外多加一些铜片散热,电压可靠性会高。”


氮化镓要选对拓扑结构才能发挥优势


目前氮化镓价格较贵,所以在高密度的部分,如果能够用普通的超结Mosfet,做到高密度就是首选的方案。同样在不同的负载上,在平均能效或者10%轻载的时候,基本上会达到90%或者94%的能效。未来氮化镓功率管是不是也适用于有源钳位拓扑呢?蒋家亮表示,“这取决于客户的目标,有的客户觉得用超结就满足要求,有些客户追求更高密度,希望使用氮化镓导更高频,我们的产品可以跑高频配氮化镓。如果用户要做设备降损,在上百K的位置也能高能效。”


“如果拓扑结构没办法跑高频,用氮化镓跑高频也是浪费,所以用户选择时一定要让氮化镓配合适的拓扑,比如说有源钳位或者LLC零电压切换的拓扑才可以跑高频。我们目前的USBType-CPD电源适配器方案,不是最小,但是可以做到更小。因为现在的频率是300K,假如到500K的高频率,变压器会更小,再配合氮化镓,功率密度一定会更高,适配器尺寸会更小。”蒋家亮补充。


声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:378886361)

钜大特种电池工程研究院

钜大特种电池工程研究院

钜大特种锂离子电池工程研究中心是由东莞钜大电子有限公司兴建,并与中南大学、华南理工大学和东莞理工学院相关科研团队联合运营的特种锂离子电池产业化研发中心,研究中心秉持"以特殊环境、特殊用途和特殊性能的需求为导向,以产学研深度融合为创新驱动"的办院方针,力求满足用户独特的需要,从而为用户创造独特的价值。