22年专注锂电池定制

定制热线: 400-666-3615

新型商用车燃料动力电池驱动装置

2020-12-02   点击量:175

将燃料动力电池用作动力装置有利于商用车技术的发展。燃料动力电池在续航里程和充电时间等方面明显优于传统蓄电池。为了实现相关技术的推广,必须进一步降低成本。该目标可通过调整燃料动力电池尺寸,推进标准化进程,以及提高系统可靠性而实现。pierburg公司目前已开发出了全新的燃料动力电池产品,以此满足未来商用车燃料动力电池驱动装置在品质、安全性和使用寿命等方面的需求。


0前言


在过去的20年中,燃料动力电池的发展虽然呈现出多样化的趋势,但其在商用车驱动装置领域中,至今仍未出现实质性的突破。早在20世纪,部分城市客车也曾小批量地使用过燃料动力电池,但是其技术发展的重点仍集中在轿车领域。近年来,研究人员将燃料动力电池的应用领域逐步过渡到商用车方向。这重要是由于降低CO2排放的欧盟商用车法规已于近期正式通过。该法规规定在2030年之前,车辆CO2排放必须比目前基准阶段降低30%。这个目标促使电驱动力总成系统逐步取代车用柴油机,从而推动了商用车燃料动力电池的应用。与蓄电池相比,燃料动力电池的优点表现在行驶里程较长和燃料加注时间较短等方面,同时还可显著优化整车布置方式,并实现轻量化,从而有效改善整车经济性(表1)。此外,假如以不新增CO2排放为前提,以此能进一步凸显燃料动力电池的技术优势,因为其能量密度高于蓄电池,同样也改善了制造过程中对环境造成的负面影响。


表1商用车动力装置的比较


1降低成本是重要的挑战


在德国,燃料动力电池技术已较为成熟,并能投入大批量生产,但目前面对的1项重要挑战是加氢站的规模及数量依然较为有限。除此之外,研究人员仍要进一步降低燃料动力电池系统的制造成本。在控制成本方面,科技界和工业界都已取得了重要进展。目前,除了燃料动力电池堆自身以外,对成本影响最大的因素是燃料供给装置和辅助设备。为此,现阶段的燃料动力电池系统具有多种尺寸形式可供选择,并且其技术性能可满足不同的功率需求。另外,目前市场上现有的燃料动力电池系统和功率等级要实现统一化和标准化。当今在汽车领域广受关注的质子交换膜燃料动力电池(pEMFC),除了开放式系统中的氧供给系统之外,共有2种封闭式循环回路可供选择。其中1种用于燃料动力电池堆的热调节,另外1种则用于供应氢燃料。燃料动力电池系统的整个外围设备通常被称为辅助控制系统(Bop),采用了机电一体化组件,其成本约为整个系统的25%(图1)。


图1pEMFC系统结构示意图


2构件的继承和标准化是关键


pierburg公司多年来大批量制造了可用于pEMFC系统的各类零部件,以及其他与燃料动力电池密切相关的辅助产品。目前,该公司将研发重点集中在阴极阀、冷却液泵及氢再循环增压器等方面(图2和图3)。冷却液泵和氢增压器有着较高的标准化要求,同时还要配备一定比例的通用件,才能使产品的成本和品质与技术转换、使用寿命及运行安全性等因素实现协调一致,并使新开发的高电压冷却液泵和经改进的氢增压器得以充分利用。为了进一步提高通用件比例并降低开发费用,研究人员将冷却液泵、氢增压器、大容量电机、功率电子器件(换流器)等高电压部件和软件进行分开设计,并且将全部的机械和电子组件集成在圆柱形整体式壳体中,其中包括转子结构组件、电机及其他电子器件(图4)。


图2用于燃料动力电池的高电压氢再循环增压器和冷却液泵


图3用于燃料动力电池的低电压氢再循环增压器和冷却液泵


图4氢再循环增压器和冷却液泵的结构


考虑到汽车制造商的设计和安全性规定,电机和电子器件基本上是按LV123/124标准而设计的,因此确保了最高电压等级为800V的HV2b和HV3等设备的安全使用。电机运行所使用的高电压功率电子器件通常会与电压系统和控制器局域网络(CAN)总线接口进行分开布置。电子器件直接与无刷直流同步电动机(BLDC)相连,以便遵循ECE-R10标准,并确保系统的可靠性和电磁特性。冷却液泵和氢增压器具有无级转速调节、系统诊断和选择性网络管理功能。接触介质的转子结构组件与电子器件的密封隔离可通过塑料缝隙式管而实现。该缝隙式管可通过纯静态负荷O型圈对壳体进行密封,并确保系统内部保有约0.8Mpa的压力。在这2种流体机械中,这种缝隙式管可防止介质与氢混合气及电子器件的大范围接触。同时,静态密封原理不会受摩擦老化的影响,因此能确保产品在整个使用寿命期内可靠运行。


研究人员在选择接触介质的结构组件材料时,除了确保其耐腐蚀性之外,也考虑到了离子和材料析出可能性,以防止氢增压器中MEA的加速退化及冷却液泵中冷却液导电性的逐渐提高。在该方面,滚动轴承作为唯一存在磨损情况的构件而成为研究关注的焦点,在冷却液泵中通常会采用通过合成材料制成的轴承。由于在氢增压器中存在气体介质,研究人员为其配备了密封滚动轴承,以便在选择材料时实现相互协调,并防止其出现静电负荷和电火花。此外,研究人员通过设计优化,使这种专门开发的轴承润滑材料在成分、粘度和化学稳定性等方面有着优异性能,从而确保轴承在整个使用寿命期内处于低摩擦运行状态。


3燃料动力电池阴极阀


与内燃机相似,为使燃料动力电池堆正常运作,应为其供应经增压装置压缩后的清洁空气。为了对新鲜空气、旁通空气和废气进行流量调节,要配备电动阀系统。此外,假如燃料动力电池堆处于非工作状态,由此会通过具有较高密封性的单向阀与周围环境实现密封隔离。


根据使用情况,上述阀板和阀门在与水和氢进行接触时,应具有较好的稳定性和耐久性。这就要使阀体与执行机构之间实现良好的密封,特别是单向阀在关闭时应呈现出较好的密封性,而且必须在整个使用寿命期内得以有效维持。


基于内燃机节气门的开发相关经验,pierburg公司旗下的研究人员设计了一系列可用于燃料动力电池负极侧的调节阀和单向阀,并已投入小批量生产。内燃机节气门的基本方法由可旋转的阀板和集成式的直流电机执行器所组成,目前已保留了这种基本方法,并根据上述标准进行进一步开发。调节阀板的尺寸已根据其各自的功率等级和所需的空气流量进行了调整。其他的技术特性,如汽车电路电压(12/24V)等,则可根据用户需求来进行配置。为了满足较高的密封性要求,研究人员采用了密封环与摆动阀板相结合的结构设计方法,在要时可通过能实现多次密封的滚针轴承以确保阀板轴与执行器间的密封效果(图5)。


图5用于燃料动力电池的负极阀板


4燃料动力电池的主冷却液泵


效率高达65%的pEMFC在电化学转换过程中仍会出现一定损失。为了使反应过程温度稳定在80~100℃,要采用强制式液体冷却,以防止燃料动力电池出现局部热损伤。同时,在低温工作状态下,研究人员应对温度和湿度进行预处理,由此可使导电性较弱的去电离水和乙二醇混合液流经燃料动力电池堆,并实现冷却。由于研究人员将一定数量的电池板进行了串联处理,因此所需的冷却液会出现较大的压力损失。针对这种情况而设计的冷却液泵应具有合适的特性曲线场,并且能稳定地输出所需的高功率。为选择合适的材料,必须确保其具有一定的耐腐蚀性,为此研究人员要采取相应措施以防止其受到冷却液导电性的影响,同时防止堆芯漏电电流的出现。


pierburg公司旗下的研究人员设计出了可用于燃料动力电池的主冷却液泵。该款主冷却液泵的电压为12V,功率为0.45kW。研究人员通过设置较高的通用件比例,并采用已投入批量生产的零件,从而有效降低了成本,同时确保了系统可靠性和品质。


在为商用车而开发的系统框架中,由于采用了高电压驱动方式,主冷却液泵相应具有较高的功率需求。在商用车上,除了已使用的400V(HV2b)系统之外,800V(HV3)系统的电压也成为了研究人员的关注焦点。专门为商用车而新开发的冷却液泵已按照上述2种电压等级和相关要求完成设计,其电功率高达2kW,因而具有广阔的应用前景(表2)。


表2用于pEMFC的高电压和低电压冷却液泵的技术参数


5氢再循环增压器


pEMFC在阳极侧供应氢燃料。氢燃料通过减压阀和计量阀而进行输送,其储存压力可根据负荷状况从目前通用的70Mpa逐步降低到0.1~0.3Mpa。为了改善燃料动力电池中的反应过程,供应的氢混合气的化学计量比大于1,堆芯出口处的混合气浓度也可根据实际运行过程进行调节。根据所采取的运行策略的不同,这种混合气在堆芯的单元或二元再循环过程中实


声明: 本网站所发布文章,均来自于互联网,不代表本站观点,如有侵权,请联系删除(QQ:378886361)

钜大特种电池工程研究院

钜大特种电池工程研究院

钜大特种锂离子电池工程研究中心是由东莞钜大电子有限公司兴建,并与中南大学、华南理工大学和东莞理工学院相关科研团队联合运营的特种锂离子电池产业化研发中心,研究中心秉持"以特殊环境、特殊用途和特殊性能的需求为导向,以产学研深度融合为创新驱动"的办院方针,力求满足用户独特的需要,从而为用户创造独特的价值。